
Introduction
Our understanding of materials phe-

nomena is based on a hierarchy of physi-
cal descriptions spanning the space-time
regimes of electrons, atoms, and matter
and given by the theories of quantum me-
chanics, statistical mechanics, and con-
tinuum mechanics. The pioneering work
of Clementi and co-workers1 provides a
lucid example of the traditional approach
to incorporating multiscale phenomena
associated with these three mechanics.
Using quantum mechanics, they evalu-
ated the interactions of several water
molecules. From this data base, they cre-
ated an empirical potential for use in
atomistic mechanics and evaluated the
viscosity of water. From this computed
viscosity, they performed a fluid-dynamics
simulation to predict the tidal circulation
in Buzzard’s Bay. This is a powerful ex-
ample of the sequential coupling of length
and time scales: a series of calculations is
used as input to the next rung up the
length/time-scale ladder.

However, there are situations where the
physics on different length scales interacts
dynamically, and an adequate description
is not possible using the sequential-
coupling scheme employed by Clementi.

Dynamic fracture is a very good example.
Energy from large-scale elastic fields is
concentrated on the angstrom scale of the
electrons that participate in atomic bond-
ing. A simulation of this phenomenon re-
quires an accurate description of atoms
bonding at the crack tip, while at the same
time including a proper description for
very large volumes of strained material,
the resolution varying with distance from
the crack tip. Far away, it is adequate
to use the equations of motion for a
macroscopic-averaged continuum field.
With decreasing distance from the crack
tip, singularities in the elastic field are
cut off by atomic-scale phenomena and
the eventual breaking of electronic
bonds. These phenomena on the one hand
require more information to describe, but
on the other hand, they dominate in suc-
cessively smaller regions of materials.
This suggests a natural physical-domain
decomposition: Å3 volumes where elec-
tronic excitations must be considered
explicitly, nm3 regions where atomic proc-
esses must be described, and ��m3 re-
gions where displacement fields are
sufficient. This spatial decomposition
makes it possible to combine different

simulation methods describing the differ-
ent physical regions into a single, power-
ful simulation tool.

We present a method that dynamically
couples continuum mechanics far from
the crack, empirical potential MD near the
crack, and quantum tight-binding (TB)
dynamics at the crack tip, to simulate frac-
ture in silicon. Continuum mechanics has
long been fruitfully applied to the study of
fracture2 by explicitly putting in pre-
existing cracks or a phenomenological
description of material decohesion. We
use it to efficiently describe large parts of
the system that are elastically deformed
but do not include highly strained or
broken bonds. Closer to the crack, as the
strains become larger and the continuum
description becomes less accurate, empiri-
cal potential molecular dynamics (MD)
provides a fast atomistic description.
While MD can be used to simulate frac-
ture by itself,3,4 the empirical potentials
that govern the interaction between atoms
may not reliably describe the breaking of
bonds at the crack tip. A more accurate de-
scription in this region is given by TB dy-
namics, a method that simulates classical
nuclei interacting via a simple quantum-
mechanical description of the electrons
that form interatomic bonds.

In the next section, we will describe
the multiscale simulation method called
MAAD,5 discuss new refinements of the
method, and present new results for the
dynamic fracture of silicon that differ sig-
nificantly from our original simulation re-
sults. Employing a new TB technique, we
observe interplanar brittle cleavage with
no surface roughening. This is in contrast
to our earlier simulation,5 where we ob-
served surface roughening at the two tips
of an interior crack, one tip being de-
scribed by an inaccurate multicluster TB
approximation and the second tip by the
empirical silicon potential of Stillinger–
Weber. This new simulation agrees with
experiment.

We give a very brief listing of other rele-
vant studies addressing multiscale simu-
lation methods. Kohlhoff and co-workers6

have coupled continuum mechanics and
atomistic dynamics in an early fracture-
simulation investigation. An independent
implementation for coupling the con-
tinuum and atomistic regimes was given
by Hoover.7 Another recent study describ-
ing a method for interfacing these two
regimes is by Rafii-Tabar et al.8 A non-
dynamical formalism bringing atomic in-
formation into the continuum mechanics
of deformation is described by Shenoy
and co-workers.9 In a paper by Capaz
et al.,10 a MD/TB coupling scheme is em-
ployed to predict equilibrium structure.
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A review of the issues involved in cou-
pling quantum systems to classical force
fields is given by Vanduijnen and Devries.11
We are unaware of any study coupling
all three regimes either concurrently or
dynamically.

The Original MAAD Method
We have invented a method for dynami-

cally coupling the length scales5 and applied
it to the rapid brittle fracture of a silicon
slab under uniaxial tension. A seed crack
is placed at its center. The slab is parti-
tioned into five regions of the simulation
(Figure 1). The natural physical-domain
decomposition of fracture suggests a
computational-domain decomposition for
parallel computers. Far from the crack, we
use continuum linear elasticity treated by
the finite-element (FE) method.12 One
processor is used for each of the two FE re-
gions. Around the crack, with large strains
but with no bond rupture, we use em-
pirical potential MD, which integrates
Newton’s equations of motion given
the interatomic forces. The force law be-
tween silicon atoms is derived from the
Stillinger–Weber potential.13 We have also
used the environment-dependent inter-
atomic potential (EDIP) of Kaxiras and
co-workers14 with similar results. Because
MD has a large computational burden, we
further partition this region spatially and
distribute the computational load onto
several processors. Lastly, in the region of
bond failure at the crack tip, we use the TB
method to provide a quantum-mechanical
description of the electrons that partici-
pate in bonding. Forces derived from TB
drive the dynamics of the nuclei, which
are described by classical degrees of free-
dom. For this silicon study, we use the
nonorthogonal TB parameterization of
Bernstein and Kaxiras.15 In the approach
discussed in Reference 5, a cluster of eight
small TB subregions was used to speed up
the calculations for the TB region, which is
the most computationally demanding
part of the overall code. We track the path
of the crack and place the center of the TB
region at the apex of the crack, where the
bond-breaking occurs. We have since
found that this overlapping TB cluster
scheme is inaccurate and makes the TB
region behave more like a region of
Stillinger–Weber atoms. As a result, the TB
crack tip and the Stillinger–Weber crack
tip had essentially identical dynamics. We
now use a single TB cluster of atoms. This
guarantees that the TB region is composed
of TB atoms with no contamination from
empirical atoms.

Two crucial aspects of our original pro-
cedure are the handshaking algorithms
between the FE and the MD method and

between the MD and the TB methods,
where seamless couplings are required.5 In
FE regions far from the FE/MD boundary,
we use a coarse mesh describing a large
continuum solid. In the FE/MD hand-
shake region (Figure 2), the FE mesh spac-
ing is scaled to atomic dimensions. The
handshaking is accomplished by taking
the interaction energy across the FE/MD
boundary as the mean of the FE linear
elastic description and the MD inter-
atomic potential description. The time-
dependent displacement field at each
mesh point in the FE region is computed
from the time-integration of the general-
ized equations of motion of continuum
elastic theory. A time-integration algo-
rithm identical to that used in conven-
tional MD is used so that the nodes in the
FE description of the displacement field
are dynamical variables that follow in
lockstep with those of their atomic cousins
in the MD region. The FE/MD interface is
chosen to be far from the fracture region,
so that MD atoms and the nodes of the
FE mesh can be unambiguously assigned
to one another.

For the MD/TB handshake interface
(Figure 3), dangling bonds at the edge of
the TB region are passivated with special
terminating atoms. These are fictitious
atoms that interact with the electrons of
the silicon atoms at the surface of the re-
gion so as to tie off a single bond each,
minimizing the effects of the surface on
the forces inside the cluster. The TB termi-
nating atoms bond like silicon, but are
monovalent like hydrogen, hence the
name “silogens.” At the surface of the TB
region, we place silogens that sit directly
on top of the atoms of the MD simulation.
The Stillinger–Weber force is computed
for these boundary atoms considering
only bonds to atoms in the MD region.
The contribution from the missing bonds
is accounted for by adding the force com-
puted for each silogen to the atom it rep-
resents. As before, the atomic positions of
the TB atoms are updated in lockstep with
their FE and MD cousins. The entire pro-
cedure is formulated in such a way that
the simulation, in the absence of dynamic
TB tracking of the crack front, conserves
total energy.

Improved Embedding of the
TB Region

The original method for treating the TB
region in the coupling of length-scale for-
malism5 traded accuracy for simulation
speed and enabled a first look at dynam-
ics driven at the electronic scale. Enhanced
speed is obtained from the way the large
TB region is split up into separate sub-
regions; this has the side effect of diluting

the TB forces by averaging them with
Stillinger–Weber forces. We have devel-
oped a new method16 for computing the
forces in the TB region that does not suffer
from this deficiency, but is presently com-
putationally more expensive in practice.
Computational effort for this method
scales linearly with the number of atoms,
and therefore, the TB region does not need
to be split into smaller subregions. We em-
phasize that the TB model of Bernstein
and Kaxiras15 is still adopted; it is the nu-
merical implementation that is different.

Our previous approach for describing
the TB region was formulated in terms of
electronic eigenvalues and eigenvectors.
These quantities require a dense matrix to
store, and the computational effort to
compute them scales as the number of
atoms cubed. The new TB solver can be
viewed in terms of the density matrix of
the occupied electronic states. This matrix
is localized in real space, and can therefore
be well approximated by a sparse matrix
with a number of nonzero matrix elements
proportional to the number of atoms. The
density matrix itself is computed by sum-
ming a Green’s function matrix formed
from Hamiltonian and overlap matrices H
and S:

G(z) � (H � zS)�1, (1)

evaluated at a small number of complex
energies zi. These values are the poles of
an approximation to the Fermi distribu-
tion proposed by Nicholson and Zhang.17

The most computationally demanding
part of the calculation is a sparse matrix
inversion, which we compute using a
biconjugate-gradient algorithm18 in a time
that scales linearly with the number of
atoms. While the TB solver described in
the previous section depends on mono-
valent, silicon-like atoms to reduce the ef-
fects of the TB region surface on the forces
computed within it, the new solver can
treat the boundary more naturally. The
matrix G(z) is localized in real space, and
the TB region boundary (by construction)
does not have any broken bonds. We can
therefore approximate the values of the
G(z) matrix elements in the boundary re-
gion by values from an ideal system. We
then perform an approximate matrix in-
version, while constraining the matrix ele-
ments involving atoms at the TB region
boundary. The full details of this method
will be published elsewhere.16

Using this solver for a TB/MD region
dynamically coupled to a surrounding
MD region is straightforward. A layer ap-
proximately two atoms thick surrounds
the region that is to be described with TB
and forms the boundary where matrix ele-
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ments are constrained. Since the TB forces
in the boundary region are unphysical,
they are ignored, and the boundary atoms
follow trajectories driven by empirical
interatomic forces. No averaging of forces
derived from TB and empirical potentials
occurs within the TB region itself. In
analogy with images of the strain waves
propagating through the MD/FE bound-
ary in Figure 6, we tested this embedding
method by sending a compression wave
through a spherical TB region in a large
empirical potential MD system. In Fig-
ure 4, we show the elastic energy field as
the wave front is going through the center
of the TB region. The image shows good
continuity, with only minimal effects by
the boundary. Because the elastic constants
in the two regions are not exactly
matched, some refraction of the propagat-
ing wave occurs. This effect is quite small,
and our test shows that the new em-
bedded TB solver is well coupled to the
MD region.

Application to Fracture
In Figure 5, we present the energy-

strain and stress-strain relations for bulk
silicon as predicted using the Stillinger–
Weber empirical potential and the TB
method. Uniaxial tension is applied to the
bulk silicon, with the additional constraint
that the interatomic separations change by
simple scaling in the three cartesian direc-
tions. The crystal is stretched in the (100)
direction. We note that the Stillinger–
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Figure 1.The geometrical decomposition of a silicon slab into the five different dynamic
regions of the simulation: the continuum finite-element (FE) region, which is not shown in its
entire extent; the atomistic molecular-dynamics (MD) region; the quantum tight-binding (TB)
region; the FE/MD “handshaking” interface; and the MD/TB “handshaking” interface.The
image is the simulated silicon slab, with expanded view of the TB region surrounded by MD
atoms. Note that the TB region surrounds the crack tip with broken-bond MD atoms trailing
behind this region.

Figure 2. Illustration of FE/MD handshake Hamiltonian.The
energy of the three dual atoms Eint at their relative position rijk

equals the mean of the energies, assuming that they are finite-
element nodes EFE or are empirical molecular-dynamics
atoms EMD.

Figure 3. Illustration of original MD/TB handshake Hamiltonian.
The TB Hamiltonian is diagonalized for the sum of light-gray �
dark-gray regions. Si-Si interactions are employed in the light-gray
area, and Si-silogen interactions are used in the dark-gray region.
Two- and three-body Stillinger–Weber interactions contributing to
handshake Hamiltonian are denoted by solid lines. Broken lines
represent noncontributing Stillinger–Weber three-body terms.
Only representative Stillinger–Weber examples are shown.



Weber behavior and the TB behavior dif-
fer significantly in the hyperelastic regime
that governs materials failure at a crack
tip. Since the mechanical stability limit

occurs at a lower strain using TB, it is rea-
sonable to expect that a crack tip of TB
atoms will fail for a smaller strain than a
crack tip of Stillinger–Weber atoms. Also,

this comparison suggests that the empiri-
cal potentials should be fitted to the
hyperelastic features of a bulk solid when
the interest is to simulate materials failure
by empirical potential MD. An important
step would be to obtain a reliable database
from accurate quantum-mechanical calcu-
lations (density-functional theory) in the
hyperelastic region, so that such a pro-
gram may be carried out. Of course, this
would also provide an effective tool for
evaluating empirical potentials and TB
schemes. For now, we are assuming that
our adopted TB scheme is accurate in the
hyperelastic regime.

Using our method for dynamic coupling
of length scales, we have simulated the frac-
ture of silicon. We create a thin crack in
single-crystal silicon samples with either
(111) or (100) faces. The system is periodic
in the direction perpendicular to the load-
ing direction and crack length. For ex-
ample, for the system with (100) faces, the
thickness is of the order of 11 Å. The MD
region is about 800 Å long in the loading
direction and about 3500Å long parallel to
the length of the crack. The full system, in-
cluding the MD and FE regions, is about
4000 Å long in the loading direction. The
FE region describes a system four times
larger than the MD region, while increas-
ing the number of degrees of freedom by
only 20% and without significantly increas-
ing the computational effort. When active,
the TB region is moved to remain centered
around the crack tip every 10 time steps.
The simulation is started by imposing a
constant strain rate across the pre-cracked
sample.

In Figure 6, we show stress waves propa-
gating through the slab by variations in
color that correspond to potential energy
variations. The stress waves passing from
the MD regions to the FE regions show no
visible reflection at the FE/MD interface;
that is, the coupling of the MD region with
the FE region appears seamless. For this
simulation, a cluster of eight small TB
subregions was used to speed up the cal-
culations for the TB region, but this over-
lapping TB cluster scheme is inaccurate
and makes the TB region behave more like
a region of Stillinger–Weber atoms. As a
result, the TB crack tip and the Stillinger–
Weber crack tip had essentially identical
dynamics. The propagating crack tips rap-
idly achieve a limiting speed (2770 m/s)
equal to 85% of the Rayleigh speed, the
sound speed of the solid silicon surface.
We note that the traveling crack surfaces
are rough and disordered for both crack
tips, consistent with the statement that the
“small multicluster” TB approximation re-
sults in a behavior very much like a region
of Stillinger–Weber atoms. Marder and
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Figure 4. Images from a simulation of a compression wave propagating through a cylindrical
TB region embedded in a larger MD region, using the order (N) TB solver, where N is the
number of TB atoms.The first image (a) shows the system before the wave has entered the
TB region in the middle of the image. (b) and (c) show the system when the wave is in the
TB region, and (d) shows it after passing to the other side. Colors represent elastic energy,
proportional to the square of the atomic displacement from the ideal positions.

Figure 5. Energy-strain and stress-strain relations for bulk silicon as predicted using the
Stillinger–Weber empirical potential and the TB method.



colleagues discovered that the Stillinger–
Weber potential did not simulate brittle
fracture via cleavage19 and that increasing
the repulsive three-body term by a factor
of two would produce cleavage in their
simulations.

Using the linear-scaling TB method, we
have embedded a single large TB cluster
in an MD simulation with the EDIP inter-
atomic potential.14 In this simulation, we
have for the first time simulated the brittle
fracture of silicon proceeding via inter-
planar cleavage (Figure 7). The TB crack
tip starts propagating at a bulk strain of
2.5%, while a Stillinger–Weber crack tip
requires a bulk strain above 8%, consistent
with the stress-strain behaviors in Fig-
ure 6. Unlike this MAAD brittle cleavage,
empirical-potential MD simulates a blunt-
ing crack accompanied by significant
atomic disorder. We have only very recently
begun these simulations, and a quantita-
tive analysis is under investigation.20

Summary
We have presented a simulation approach

for physical problems that span a wide
range of length scales using brittle fracture
as an example application. This paper
clearly demonstrates that the MAAD ap-
proach is in a dynamic period of develop-
ment. Future studies may likely apply
more sophisticated computational tech-

niques to simulate the three regions, invent
more robust procedures for interfacing the
three regions, and address physical prob-
lems very different from this present
study. The concurrent spanning of the
continuum to the quantum should prove
to be a powerful approach in computa-
tional physics.
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Figure 6. Elastic energy waves propagating through the slab, visualized using a potential-
energy color scale.The waves pass through the MD/FE coupling interface with no visible
reflection.

Figure 7. Comparison of crack propagation in silicon using TB atoms (left-hand column) and
environment-dependent interatomic potential (EDIP) atoms (right-hand column) for the
crack tip, respectively. Using TB, we see brittle fracture proceeding via interplanar cleavage.
The top and bottom images in each column are at 2.5% and 3.3% strains, respectively. Red
atoms are treated only with the empirical potential, green atoms are treated only with TB,
and blue atoms form the boundary between the two regions. Using EDIP, we see crack
motion initiating at a much higher strain (8.3%) and proceeding with blunting and
significant disorder.
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